Тонкопленочные модули из аморфного кремния

Поделиться ссылкой на статью

Обновлено 12 ноября, 2023

Тонкопленочные фотоэлектрические модули из аморфного кремния

Пример солнечной батареи с аморфными кремниевыми модулями Тонкопленочные технологии часто рассматривают как будущее фотоэлектрической энергетики, несмотря на то, что в настоящее время более 90% всех производимых в мире солнечных модулей — кристаллические. Тем не менее, технологии тонкопленочных модулей развиваются очень быстро, причем в нескольких направлениях. Самая первая технология тонкопленочных модулей, которая получила коммерческое распространение — пленка из аморфного кремния. Первое поколение с однопереходными солнечными элементами имело малый срок службы (до 10 лет) и КПД 4-5%. Второе поколение также имело однопереходные элементы, но их срок службы уже практически сравнялся со сроком службы кристаллических элементов, а КПД составлял 6-8%. К третьему поколению можно отнести наиболее современные многопереходные тонкопленочные элементы, которые позволяют достичь еще большего КПД (до 12%) при длительном сроке службы.

Также, существуют гибридные аморфно-кристаллические модули, которые позволяют комбинировать преимущества как аморфных, так и кристаллических модулей. В России такие многопереходные гетероструктурные модули производит компания Hevel Solar.

Тонкопленочные модули бурно развивались в начале 2000-х годов, когда был дефицит производства кремния для солнечной энергетики. Тогда производители пытались уменьшить расход кремния при производстве солнечных панелей и снизить их стоимость. Однако к концу «нулевых» в мире были введены огромные мощности по производству солнечного кремния, которые закрыли все потребности производителей. Это привело к тому, что тонкопленочные модули были практически полностью вытеснены с рынка. Основной причиной был низкий КПД таких модулей (практически в 2 раза ниже, чем у кристаллических), а также необходимость двойного стекла при производстве таких паналей (одно стекло использовалось как подложка для полупроводникового перехода, а второе было защитным), что приводило к большой удельной массе солнечных панелей.

При производстве тонкоплёночных модулей расходуется примерно в 10 раз меньше кремния, чем для кристаллического. Однако рыночная ситуация сейчас (в 2021 году)  такова, что ввиду закрытия большинства производств по изготовлению тонкоплёночных модулей из аморфного кремния, они зачастую за ватт продаются дороже, чем обычные кристаллические солнечные панели.

Объёмы производства тонкоплёночных кремниевых модулей сейчас составляют несколько процентов от общего объёма рынка солнечных панелей. В основном это некремниевые солнечные модули. Они используются в рыночной нише интегрированных в здания солнечных панелей — то есть там, где в первую очередь важен аутентичный внешний вид (тонкопленочные модули похожи на затонированное стекло).

Преимущества тонкопленочных солнечных модулей

Фотоэлектрические модули из аморфного кремния имеют ряд преимуществ по сравнению с моно- и поликристаллическими панелями, а именно:

Зависимость выработки различных типов фотоэлектрических модулей от интенсивности света
Зависимость выработки различных типов фотоэлектрических модулей от интенсивности света
Сравнение выработки аморфных и кристаллических модулей
Сравнение выработки аморфных и кристаллических модулей
]shadowing тонкопленочные,тонкопленочные солнечные панели
Влияние затенения на выработку солнечных тонкопленочных модулей
  1. лучшая работа при повышении температуры. Фотоэлектрические модули из тонкой пленки аморфного кремния в течение теплого периода года производят больше электрической энергии, в то время как кристаллические модули по мере повышения температуры снижают свою эффективность. Тонкопленочные солнечные модули меньше подвержены снижению мощности при нагреве, при котором кристаллические модули теряют 15-20% мощности.
  2. бОльшая удельная выработка при низкой освещенности и при рассеянном свете. Модули из аморфного кремния могут работать при освещенностях, при которых кристаллические модули уже прекращают генерацию энергии, поэтому при слабом и рассеянном солнечном свете работа фотоэлектрических модулей из аморфного кремния намного лучше, чем моно- и поликристаллических кремниевых панелей. В пасмурную и дождливую погоду тонкопленочные солнечные батареи генерируют на 10-20% больше энергии, чем кристаллические панели.
  3. возможность незаметной интеграции в здание (замена окон, остекление стен, и т.п.)
  4. меньшая вероятность производственных дефектов. Поскольку процесс производства аморфных модулей более прост, то в продукции значительно меньше дефектов. При производстве кристаллических солнечных модулей используется пайка для электрического соединения солнечных элементов между собой. Это было и остается слабым местом, где традиционные модули испытывают много гарантийных проблем. Совсем по-другому обстоит дело с тонкопленочными солнечными модулями — модуль формируется сразу практически любых размеров, пайка отдельных солнечных элементов не требуется.
  5. меньшая потеря мощности при частичном затенении. Кристаллические кремниевые модули теряют 25% и более процентов своей производительности при даже незначительном затенении или грязи на модулях. Тонкопленочные модули уменьшают выработку совсем незначительно, что в результате приводит к реально лучшей производительности в течение всего срока службы модулей (примечание — падение выработки тонкопленочных модулей зависит от того, как затеняется модуль — по длине или ширине).

Недостаток у аморфных модулей один, но зачастую он перекрывает их достоинства — примерно в 2 меньший КПД по сравнению с кристаллическими модулями.

тонкопленочные солнечные панели на фасаде здания
Фасад с интегрированными тонкопленочными солнечными модулями

В качестве подложки для аморфных модулей можно использовать как стекло, так и другие гибкие прозрачные материалы. Есть модули на гибкой основе, которые используются в качестве гибкой черепицы, есть модули, которые можно скатывать в рулоны для транспортировки, есть интегрированные в различные бытовые предметы — одежду, сумки, головные уборы и т.п. Однако в большинстве случаев используются модули на стекле, причем для защиты задней стороны модулей также применяют стекло. Это ведет ко второму существенному недостатку аморфных модулей — большему весу за счет применения двойного стекла (как известно, у кристаллических модулей с задней стороны обычно используется защитная пленка.

Область применения аморфных модулей

Аморфные модули рекомендуется применять в следующих случаях:

  • в регионах с обычно облачной погодой (рассеянный или отраженный свет)
  • в жарком климате, когда модули обычно нагреваются более 50-60 градусов
  • если нет ограничений по площади и максимальному весу солнечной батареи
  • если нужно интегрировать фотоэлектрические модули в здание — аморфные модули практически невозможно отличить от тонированного стекла. В отличие от традиционных кристаллических, тонкопленочные модули могут быть использованы для различных дизайнерских и конструкторских решений. В дополнение к традиционной установке на крыше, прочные, стильные и изящные фотоэлектрические модули из аморфного кремния широко применяются для отделки фасадов зданий как отдельные элементы, архитектурные композиции и решения, что до последнего времени считалось невозможным.
  • если нужна частичная прозрачность модулей — аморфные модули можно делать с прозрачностью от 5 до 20% (с соответствующим уменьшением вырабатываемой мощности).

Современные аморфные модули имеют такую же деградацию, как и кристаллические модули. Производитель дает гарантию на то, что мощность модулей снизится не более 10% от номинальной за 10 лет эксплуатации, и не более 20% — за 25 лет эксплуатации. Это соответствует деградации и гарантиям на модули из кристаллического кремния.

Как упоминалось выше, тонкоплёночные модули вырабатывают больше энергии на ватт установленной мощности. Это подтверждается многолетними испытаниями солнечных модулей различного типа в Институте Высоких Температур (ИВТАН) в Москве. Результаты испытаний показывают, что на кВт установленной мощности тонкоплёночные модули в условиях Москвы вырабатывают 726 кВт*ч/кВт/год, в то время как обычные монокристаллические модули — около 690 Вт*ч/кВт/год.

Год Месяц года среднесуточный уровень инсоляции, Вт/м² TSM210SB* TSMC140 TCM200 MSW180 Canadian Solar 210Вт ELPS* GET AT2** MLT 265
2015 11 21,7 11,4 14,2 11,8 11,7 11,2 12,6 12,1
2015 12 10,9 4,6 6,6 5,1 6,1 4,6 5,5 5,2
2016 2 40,9 12,9 13,0 12,1 13,3 12,7 12,5 12,5
2016 3 108,8 61,9 55,8 68,5 68,0 66,3 66,8 55,4
2016 4 128,7 82,1 79,7 80,6 66,4 84,0 82,4 66,1
2016 5 172,1 110,6 100,1 108,8 57,8 112,2 114,0 106,8
2016 6 182,7 117,2 113,0 112,9 108,9 116,7 119,5 113,4
2016 7 172,5 115,1 112,9 108,0 106,2 111,6 116,1 108,7
2016 8 177,1 109,6 107,0 107,2 104,3 109,3 115,5 55,1
2016 9 75,8 46,8 46,8 45,1 46,0 46,3 47,4 30,9
2016 10 38,3 24,0 24,4 23,4 24,4 23,7 23,2 23,6
2016 11 23,0 10,4 12,4 10,5 9,9 8,9 10,3 10,6
ИТОГО, кВтч/кВт     706,821 685,841 693,9975 623,045 707,50095 725,8357 600,3249

*В модуле Телеком-СТВ TSM210SB используются высокоэффективные солнечные элементы SunPower. В солнечном модуле Canadian Solar также применены высокоэффективные солнечные элементы, сделанные по проприетарной технологии ELPS
**GET AT2 — тонкопленочный модуль из аморфного кремния, второго поколения.

См. также про Сравнение тонкопленочных и кристаллических фотоэлектрических модулей

Эта статья прочитана 20487 раз(а)!

Продолжить чтение

  • 10000
    Основы фотоэнергетики (Содержание)Что такое солнечные элементы, модули, инверторы, контроллеры, электростанции? Солнечная энергетика становится мейнстримом современной энергетики, и с каждым годом вызывает все больший интерес. Фотоэлектрическая энергетика - новая отрасль, которая стремительно развивается и уже сейчас современный мир невозможно представить без солнечных фотоэлектрических…
  • 67
    Соединение солнечных панелей - 2 важных правилаКак правильно соединять солнечные модули в солнечную батарею? Для увеличения мощности солнечной батареи несколько фотоэлектрических модулей соединяют последовательно и/или параллельно. Увеличение мощности солнечной батареи позволяет больше использовать экологически чистую солнечную энергию для питания различных потребителей электроэнергии. Очень часто наши клиенты…
  • 65
    7 мифов о солнечной энергетикеГлавные 7 мифов о солнечных батареях По разным причинам в интернете есть много неправильной информации о недостатках или проблемах солнечных батарей. Некоторые заявления о солнечной энергетике приносят вред делу борьбы с изменением климата и за уменьшение токсичных выбросов. Большая часть…
  • 63
    Солнечные элементыКак работают солнечные фотоэлектрические элементы? Структура солнечного элемента Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния (химический символ Si). Кремний это полупроводник. Он…
  • 59
    Фотоэлектрические модулиФотоэлектрические модули (солнечные панели) Солнечные панели состоят из солнечных элементов. Так как один солнечный элемент не производит достаточного количества электроэнергии для большинства применений, солнечные элементы собираются в солнечных модулях для того, чтобы производить больше электричества. Модули производятся из псевдоквадратных или…
  • 59
    12 преимуществ Double-Glass солнечных модулейСолнечные фотоэлектрические модули с двойным стеклом Модули с двойным остеклением (double glass) Солнечные модули с двойным стеклом  появились на рынке сравнительно недавно - 5-7 лет назад, но до недавнего времени они были дороже обычных модулей. В 2017 году они стали…
Реклама

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *