Солнечная Россия

Солнечная Россия

Источник: журнал «В МИРЕ НАУКИ» январь 2005 № 1, Энергетика

Олег Попель, Ирина Прошкина

Масштабы использования возобновляемых источников энергии (ВИЭ), к которым прежде всего относятся энергия солнца, ветра, биомассы, малых рек, геотермальная энергия, природное и сбросное низкопотенциальное тепло, растут с каждым годом. Сегодня их доля в мировом энергетическом балансе составляет около 8%, а к 2010 г., по прогнозам специалистов, должна возрасти до 12%. Технологии использования ВИЭ неуклонно совершенствуются и становятся все более конкурентоспособными и привлекательными. Повышенный интерес к применению экологически чистых ВИЭ во многих странах связан как с ростом цен на традиционные энергоносители, так и с угрозой антропогенного загрязнения окружающей среды, в том числе энергетическими объектами.

В последние годы внимание к новым источникам энергии резко возросло и в России. Несмотря на то что страна обладает колоссальными запасами нефти, газа и угля, затраты на их добычу и транспортировку неуклонно растут. Большая часть территории с населением около 20 млн. человек не имеет централизованных систем электро- и теплоснабжения. В условиях быстрого роста тарифов (в некоторых регионах России за последние 4 года — в 3-5 раз) многие потребители предпочитают использовать собственные, в том числе нетрадиционные автономные источники энергии. Появляются новые области их эффективного практического применения.

К примеру, на Камчатке нескольких блоков Верхне-Мутновской и Мутновской геотермальных электростанций позволил существенно облегчить положение с энергоснабжением полуострова. Причем следует отметить, что себестоимость электроэнергии ГеоЭС существенно ниже, чем на дизельных электростанциях.

В настоящее время активно развиваются и внедряются технологии энергетической переработки отходов деревоперерабатывающей промышленности на северо-западе России. Создаются ветроэнергетические комплексы на Чукотке, в Калининградской, Ленинградской и других областях страны. Расширяется применение мини- и микро-ГЭС в горных районах Алтая, Башкирии, Бурятии, растет интерес к системам теплоснабжения на базе тепловых насосов.

Широкое применение в России могла бы найти и солнечная энергия. Несмотря на то что в ряде районов страны (прежде всего в Краснодарском крае, Дагестане, Бурятии) в течение ряда лет успешно работают солнечные водонагревательные установки, обеспечивающие горячей водой некоторые санатории, дома отдыха, больницы и жилые дома, в других регионах отношение к ним острожное. Бытует мнение, что солнечная энергия может эффективно использоваться только в южных странах, а Россия после распада Советского Союза стала считаться северной страной, где солнечного излучения недостаточно и использовать его нецелесообразно.

Последние исследования и разработки специалистов Института высоких температур Российской академии наук (ИВТ РАН) доказывают несостоятельность такой точки зрения.

В Лаборатории возобновляемых источников энергии и энергосбережения ИВТ РАН завершена разработка Атласа распределения ресурсов солнечной энергии по территории России, создана климатическая база данных, ориентированная на исследования в области солнечной энергетики. Наземных станций, на которых проводятся систематические измерения потоков солнечного излучения на территории России, насчитывается всего около ста, что явно недостаточно для районирования всей территории страны. Поэтому в исследованиях были использованы также спутниковые данные NASA, полученные за 10 лет наблюдений за радиационным балансом земной поверхности, в том числе и над территорией России. В результате сотрудниками лаборатории составлены карты поступления солнечной радиации на неподвижные поверхности, ориентированные различным образом в пространстве для всех регионов за определенные периоды года. Для эффективного преобразования энергии Солнца важно выбрать оптимальный угол наклона солнечного коллектора, при котором суммарное поступление энергии солнечного излучения на приемную поверхность за рассматриваемый период работы максимально. Оптимизация угла позволяет в 1,3-1,5 раза увеличить сбор энергии по сравнению с ее поступлением на горизонтальную поверхность.

Построение карт позволило системно оценить потенциал солнечной энергии в различных регионах страны. На изображенной выше карте приведено среднегодовое распределение ресурсов энергии солнечной радиации, поступающей в среднем за день на 1 м2 площадки южной ориентации с оптимальным углом наклона к горизонту (для каждой географической точки это свой угол, при котором суммарное за год поступление энергии солнечной радиации на единичную площадку максимально). Очевидно, что в сегодняшних границах России наиболее «солнечными» являются не районы Северного Кавказа, как предполагают многие, а регионы Приморья и юга Сибири (от 4,5 до 5,0 кВт ч/м2 день). Интересно, что Северный Кавказ, включая известные российские черноморские курорты (Сочи и др.), по среднегодовому поступлению солнечной радиации относятся к той же зоне, что и большая часть Сибири, включая Якутию (4,0-4,5 кВт ч/м2 день). Более 60% территории России, в том числе и многие северные районы, характеризуются среднегодовым поступлением от 3,5 до 4,5 кВт ч/м2 день.

РАТАН- 600 — радиотелескоп Специальной астрофизической обсерватории Российской академии наук, расположенный в станице Зеленчукская на Кавказе. Название — акроним «Радиоастрономический телескоп Академии наук». Телескоп состоит из 900 параболических пластин, образующих круг диаметром 600 м. Он может использоваться как целиком, так и по частям — каждая четверть телескопического зеркала может работать отдельно.

Важным фактором, определяющим экономическую эффективность применения солнечных установок, является продолжительность их использования в течение года. Проблема заключается в том, что для высокоширотных районов различие в поступлении радиации летом и зимой может быть достаточно велико. Так, для территорий, расположенных за Полярным кругом, значительная часть зимнего времени приходится на полярную ночь. В средней полосе России, в том числе и в Москве, поступление энергии солнечного излучения в летний период в пять раз больше, чем в зимний. В этой ситуации возникает вопрос: какие водонагревательные установки наиболее целесообразно предлагать потребителям: сезонные, работающие только в теплый период, или круглый год? Очевидно, что в последнем случае солнечные водонагревательные установки (СВУ) должны иметь большую поверхность солнечных коллекторов для сбора менее интенсивных потоков радиации. Кроме того, в них должен использоваться незамерзающий теплоноситель и, следовательно, дополнительные теплообменники для передачи тепла к воде. Очевидно, что такие агрегаты будут более дорогими и экономически менее привлекательными.

Освоение «солнечного» рынка в России должно начинаться прежде всего с простейших СВУ сезонного действия, которые могут найти эффективное применение не только на юге страны, но практически на всей территории России. С экономической точки зрения они конкурентоспособны там, где их можно замещать электрическими водонагревателями, потребляющими дорогую электрическую энергию. Их также можно использовать на всех объектах с сезонным (летним) потреблением горячей воды (летние кафе, туристические базы, дома отдыха и т.п.). Особо привлекательны установки для большинства россиян, имеющих летние дачи и загородные дома, электроснабжение которых часто ограничено пропускной способностью местных электрических сетей или вовсе отсутствует. Они имеют хорошие перспективы для применения в сельском хозяйстве, местной промышленности, на объектах жилищно-коммунального хозяйства.

Если взглянуть на карту распределения поступления солнечной радиации на поверхность земли по территории России за летний период, то видно, что большинство районов страны вплоть до 65о северной широты характеризуются примерно одинаковыми высокими значениями среднедневной радиации от 4,5 до 5 кВт ч/м2 день, и с этой точки зрения энергетическая эффективность СВУ на всей этой территории оказывается приблизительно одинаковой.

Как же обеспечить широкое внедрение солнечных установок на российский рынок? Прежде всего необходимо преодолеть психологический барьер. Нужно более активно информировать потенциальных пользователей о возможностях и особенностях новых предлагаемых технологий. Крайне важно создание в регионах сети объектов, наглядно демонстрирующих энергетические, экономические и экологические преимущества использования солнечной энергии. Наконец, необходимо предложить рынку новые эффективные и, что особенно важно, менее дорогие установки

Сотрудниками Лаборатории разработаны современные методы моделирования работы СВУ в реальных климатических условиях, на основе которых определена эффективность их применения в различных регионах России. Показано, например, что в климатических условиях Московского региона с помощью простейшей солнечной водонагревательной установки, имеющей плоский солнечный коллектор площадью 2 м2 и бак-аккумулятор емкостью 100 л., в период с апреля по сентябрь можно получать теплую воду (т.е. нагретую до температуры выше 37оС) не менее чем в 70% дней этого периода, а при температуре более 45оС — в течение 50% дней без использования какого-либо резервного нагревателя. Даже в условиях г. Салехарда, расположенного на полярном круге, в летнее время установки могут обеспечить теплой водой более 60% дней.

В лаборатории разработаны новые конструкции солнечных коллекторов и СВУ из теплостойких и стойких к ультрафиолету пластмасс, позволяющие снизить их стоимость в 1,5-2 раза по сравнению с водонагревателями из нержавеющей стали, цветных металлов и стекла. Совместно с проектными организациями разрабатываются типовые решения по использованию солнечных установок различными потребителями. Созданы также стенды для теплотехнических испытаний и сертификации солнечных коллекторов и солнечных водонагревателей в соответствии с национальными и международными стандартами

Большое внимание уделяется созданию демонстрационных объектов в различных регионах страны. Одним из таких полигонов для применения ВИЭ (возобновляемых источников энергии) стала в последние годы Специальная астрофизическая обсерватория Российской академии наук (САО), всемирно известный научный центр, расположенный в горах Западного Кавказа. Теплоснабжение научного поселка САО с населением 800 человек обеспечивается местной котельной на дорогом привозном жидком топливе. Отопление и горячее водоснабжение научных комплексов САО, расположенных за пределами поселка, в связи с недопущением загрязнения атмосферы — электрическое. В рамках демонстрационного проекта, осуществляемого под научным руководством лаборатории при финансовой поддержке Федерального агентства по науке, в настоящее время проводится реконструкция систем энергоснабжения САО с широким использованием возобновляемых источников энергии и энергосберегающих технологий. Разработаны и поэтапно вводятся в строй более десятка солнечных установок различного назначения (сезонное и круглогодичное горячее водоснабжение, подогрев воды в бассейне, отопление ряда помещений). Пущена система теплонасосного теплоснабжения здания Большого оптического телескопа. При этом в качестве низкопотенциального используется тепло, выделяющееся в масляной системе подвески многотонной конструкции телескопа. Также проектируется ветровая ферма и энергоустановка на базе микро-ГЭС, которые предполагается использовать в качестве дублирующих источников энергии. Планируется создание когенерационной энергоустановки (мини-ТЭЦ) на базе действующей котельной жилого поселка. Ожидается, что большинство принятых к реализации технических решений имеют сроки окупаемости от 1 до 5 лет, что характеризует их как высокоэффективные.

Учитывая положительный опыт применения ВИЭ для Специальной астрофизической лаборатории, правительство Карачаево-Черкесской Республики приняло решение о расширении эксперимента и оснащении солнечными и другими установками с ВИЭ ряда объектов на территории республики, в том числе центральной усадьбы и кордонов Тебердинского природного биосферного заповедника, горнолыжных и туристических центров в Домбае, Архызе и др. Начата подготовка Республиканской программы широкого применения ВИЭ и энергосберегающих технологий, которая могла бы стать составной частью Российской программы по использованию возобновляемых источников энергии, запуск которой планируется при участии Глобального экологического фонда Всемирного банка в 2005 г.

ОБ АВТОРАХ:
Олег Сергеевич Попель — кандидат технических наук, зав. лабораторией возобновляемых источников энергии и энергосбережения Института высоких температур РАН. Научные интересы: теплофизика, преобразование различных видов энергии, нетрадиционные возобновляемые источники энергии, водородная энергетика, энергосбережение, экология.
Ирина Павловна Прошкина — специальный корреспондент журнала «В мире науки».

Эта статья прочитана 1318 раз(а)!

Продолжить чтение

  • 54
    Использование нетрадиционных источников энергии для теплоснабжения объектов жилищно-коммунального хозяйства Авторы: Олег Петрович Ковалев, Александр Владимирович Волков АННОТАЦИЯ Представлены сравнительные экологические характеристики энергетических установок различного типа. Показаны преимущества нетрадиционных энергетических установок. Указаны стоимости зарубежных и отечественных солнечных водонагревательных и фотоэлектрических установок…
Реклама

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *