Пусть солнце наполнит энергией вашу жизнь!
"Ваш Солнечный Дом" - Ваше решение проблемы автономного энергоснабжения
Тел.: 499-7489064, 916-3850200, 495-7339970 д.200734
ГЛАВНАЯ -> Солнечные батареи
подразделы документы этого раздела
Солнечные модули
Руководство для покупателя
Монтаж СБ
Общая информация
Фотоэлектрические комплекты
Фотоэлектрические системы
Зачем СБ сейчас?
Соединенные с сетью системы
Зарядные устройства
Солнечное освещение
Online расчет системы
Расчет ФЭ системы
Типичная нагрузка
Метеоданные

| версия для печати

Фотоэлектрические системы электроснабжения, соединенные с сетью

Каргиев В.М.
Компания "Ваш Солнечный Дом"

Мы являемся первой, и пока практически единственной компанией на российском рынке, которая широко продвигает применение сетевых фотоэлектрических инверторов в автономных, резервных и соединенных с сетью системах. Ни одна из других компаний, даже продающая аналогичное или то же самое оборудование, не имеет такого успешного опыта, как у нас.

Основной причиной, по которой люди хотят иметь автономную систему и отключиться от существующих сетей централизованного электроснабжения, является желание получить энергетическую независимость и не зависеть от аварий на электросетях, повышения тарифов на электроэнергию и т.п.

Пока еще немного людей готовы жить без подключения к сетям. Если вы только собираетесь покупать землю и дом или строить новый дом, то нужно учитывать, что цена на такие участки и дома, не присоединенные к сетям централизованного электроснабжения, гораздо ниже. Достоинства автономных энергосистем подробно описаны на странице С сетью или без?.

Если вы уже имеете подключение к электрическим сетям, то не имеет смысла от них отключаться. Если у вас есть перерывы в электроснабжении, можно выделить в отдельную группу ответственных потребителей - например, насосы и электроника системы отопления, холодильник, дежурное освещение, радио, телевизор и т.п. - и обеспечить их бесперебойное электропитание за счет аккумуляторных батарей. Если перерывы в электроснабжении не превышают нескольких часов, то обычно этого достаточно, чтобы решить эту проблему. Солнечные батареи будут использоваться для уменьшения потребления от сетей, а сети будут являться вашим бесплатным аккумулятором бесконечной емкости.

В случае частых аварий и отключений в сетях, а также если отключения длительные (более суток), вам нужно поставить батарейную фотоэлектрическую систему электроснабжения. Большинство загородных домов нуждается именно в батарейной фотоэлектрической системе, так как вероятность перерывов в электроснабжении велика - по разным причинам, начиная от перегрузки и изношенности оборудования электросетей, до падения деревьев на ЛЭП, ледяных дождей, ураганов и т.п.

Введение в систему аккумуляторов дает возможным работу системы при различных нагрузках и при отсутствии сети. Есть специально разработанные батарейные инверторы, которые могут регулировать потребление энергии от сети в зависимости от состояния и степени заряженности аккумуляторов. Такие инверторы также не перенаправляют энергию в сеть, если пропало напряжение в сети, тем самым обеспечивая безопасность при проведении ремонтных работ на линии электропередачи.

Для того, чтобы не тратить лишние деньги на неоправданно мощную систему, вам необходимо тщательно посчитать, какая именно нагрузка и в течение какого времени должна будет работать в случае аварии на ЛЭП. Очень часто нужно бывает обеспечить примерно 1/10 часть от общей мощности потребителей во время перерывов в электроснабжении. Остальная нагрузка может быть выключена или ее работа сведена к минимуму до восстановления работы сетей. Это позволит существенно снизить стоимость вашей резервной системы электроснабжения. Также, как уже упоминалось на других страницах нашего сайта, все меры по улучшению энергоэффективности и уменьшению потребления должны быть сделаны до того, как мы с вами начнем рассчитывать систему резервного электроснабжения. Обычно это делается в несколько этапов - мы предлагаем вам систему, вы оцениваете ее бюджет, уменьшаете в случае необходимости ваши запросы, и мы корректируем состав (и стоимость) системы.

Типичная безаккумуляторная фотоэлектрическая система стоит 6-8 долларов за пиковый ватт. Аккумуляторные системы стоят от 10 долларов за ватт и выше, потому что нужно добавить аккумуляторы и дополнительное оборудование для их заряда. Дополнительная информация также находится на страничке АС системы электроснабжения.

Безаккумуляторные фотоэлектрические системы

Сетевая фотоэлектрическая система электроснабжения
Сетевая фотоэлектрическая система электроснабжения

Большинство соединенных c сетью фотоэлектрических систем являются безаккумуляторными и требуют наличия напряжения в сети для своей работы. Сеть дает опорное напряжение для сетевых инверторов, которые синхронизируются с ним и выдают идентичное сетевому напряжение. Если такого сигнала нет, или он начинает сильно отличаться от нормального (по величине напряжения, частоте и т.п.), сетевой инвертор перестает работать.

Преимуществом такой системы является максимально эффективное использование солнечных батарей, которые всегда работают в точке максимальной мощности. Сетевые инверторы начинают выдавать энергию от солнечных батарей в сеть начиная с минимального значения (например, StecaGrid начинает работать, если СБ вырабатывают 2-3 Вт).

Прекращение генерации сетевых инверторов при пропадании напряжения в сети также связано с обеспечением безопасности при ремонтных работах в сетях. Необходимо обеспечить отсутствие напряжения на линии, если подача напряжения отключена электриком на подстанции.

При работе параллельно с сетью солнечная батарея использует сеть как аккумулятор и источник энергии, который обеспечивает недостатки энергии. Например, если ваш холодильник потребляет 5 ампер, и солнечная батарея вырабатывает 5 ампер, то практически это значит, что ваш холодильник питается от солнечных батарей. Однако не все так просто. Если при старте компрессора мотор потребляет 10 ампер, то только от солнечной батареи он не запустится. Также, он может не работать при облачной или пасмурной погоде. В этом случае все, что не хватает для нормальной работы холодильника, будет браться из сети. Также, в сеть будут направляться все излишки генерируемой солнечными батареями энергии.

Аккумуляторные фотоэлектрические системы резервного электроснабжения

Проектирование системы с аккумуляторами является более сложным и более ответственным, чем проектирование безбатарейной системы. Если вы ошибетесь при выборе мощности соединенной с сетью безбатарейной системы, недостающая энергию будет взята из сети. Однако, если вы рассчитаете неправильно систему с аккумуляторами, то во время перерывов в электроснабжении вы можете оказаться без электроэнергии, несмотря на то, что вы имеете комплект "бесперебойного электроснабжения".

Мощность инвертора определяется по суммарной мощности нагрузки, которую нужно питать во время аварий на сети. Длительность отсутствия подачи энергии от ЛЭП определяет емкость АБ, мощность солнечной батареи, ветроустановки, резервного генератора и т.д. В конечном итоге, ошибки в проектировании системы приводят либо к излишней стоимости системы, либо к неспособности системы обеспечить вас бесперебойным электроснабжением. В любом случае, модификации системы - это дополнительные затраты.

Для максимально эффективной работы аккумуляторная фотоэлектрическая система, соединенная с сетью, требует использования специализированного инвертора. Возможны 3 варианта работы системы:

  1. Солнечные батареи заряжают АБ через контроллер заряда, а затем энергию через инвертор передается в нагрузку или сеть
  2. Солнечные батареи работают на сетевой фотоэлектрический инвертор, от него питается нагрузка, излишки энергии идут на заряд аккумуляторов, а если АБ заряжены, то направляются в сеть.
  3. Гибридная система, включающая элементы обоих вышеперечисленных типов.
Фотоэлектрическая система электроснабжения с контроллером заряда постоянного тока
Рис.1. Сетевая фотоэлектрическая система электроснабжения с контроллером заряда постоянного тока

1. Сетевая фотоэлектрическая система электроснабжения с контроллером заряда постоянного тока. Самым простым и распространенным вариантом является заряд аккумуляторов от солнечных батарей через контроллер заряда постоянного тока. Если использовать обычный ББП, то при наличии сети заряд происходит от сети, и солнечные батареи практически не используются. Для того, чтобы максимально использовать энергию, вырабатываемую солнечными батареями, нужно применять контроллер MPPT и специальный ББП с функцией передачи электроэнергии в нагрузку или сеть при напряжения на АБ выше заданного. В этом случае, даже если АБ заряжены полностью от сети, энергию от СБ направляется в нагрузку, тем самым уменьшая потребление от сети. Если нагрузка потребляет меньше энергии, чем вырабатывают солнечные батареи, такой ББП может или направлять излишки в сеть, или уменьшать выработку солнечных батарей за счет повышения напряжения на аккумуляторах.

В такой схеме могут работать ББП Xtender XTH/XTM, SMA Sunny Island, Xantrex XW, RichElectric CombiPlus, Outback GFX/GVFX

При авариях на сетях централизованного электроснабжения инвертор начинает генерировать энергию от аккумуляторов. Если солнечные батареи подключены через контроллер заряда к аккумуляторам, то инвертор использует солнечное электричество, и, если его не хватает, то и энергию из аккумуляторов. Если солнечной энергии больше, чем нужно для потребителей, она идет на заряд аккумуляторов.

    Достоинства
  1. Возможность использования энергии солнца как при наличии сети, так и во время отключений
  2. При длительных перерывах в электроснабжении - возможность восстановления работы при глубоком разряде аккумуляторов путем заряда АБ от СБ
    Недостатки
  1. Потери на двойное преобразование солнечного электричества - потери в контроллере, в инверторе, частично в аккумуляторах
  2. Циклирование аккумуляторов приводит к их износу, однако такой режим имеет место только при перерывах в централизованном электроснабжении, в обычном режиме аккумуляторы работают в буферном режиме со сроком службы близком к сервисному.
Фотоэлектрическая система электроснабжения с сетевым инвертором на входе ББП
Рис.2. Фотоэлектрическая система электроснабжения с сетевым инвертором на входе ББП

2.Фотоэлектрическая система электроснабжения с сетевым инвертором на входе ББП. В этой схеме применен высокоэффективный сетевой инвертор. Если основное потребление солнечного электричества имеет место днем, и отключения централизованного электроснабжения редкие и недолгие, то такая схема является наиболее дешевой и эффективной. В такой схеме может использоваться любой бесперебойник, даже самый простой. Когда светит солнце, сетевой инвертор снабжает энергией нагрузку во всем доме, в том числе и резервируемую. Излишки энергии направляются в общую сеть только если потребление в доме меньше, чем генерируют солнечные батареи. Энергия солнца используется и на заряд аккумуляторов. Эффективность сетевого инвертора более 90%. Единственным недостатком является прекращение использования энергии солнца при авариях в сетях.

    Достоинства
  1. В такой схеме могут работать любой ББП и любой сетевой фотоэлектрический инвертор
  2. Мощность ББП выбирается по мощности резервируемой нагрузки и не зависит от мощности солнечных батарей. Мощность сетевого инвертора может быть как больше мощности ББП, так и меньше.
  3. Возможность восстановления при глубоком разряде аккумуляторов при использовании небольшой СБ, подключенной к АБ через контроллер заряда (показаны пунктиром). Это необязательный элемент, если отключения кратковременные.
  4. Аккумуляторы все время находятся в заряженном состоянии и практически работают в буферном режиме и используются только при отключениях сетевого электричества
    Недостатки
  1. Прекращение использования энергии солнца при авариях в сетях
Фотоэлектрическая система электроснабжения с сетевым инвертором на выходе ББП
Рис.3. Фотоэлектрическая система электроснабжения с сетевым инвертором на выходе ББП

3.Фотоэлектрическая система электроснабжения с сетевым инвертором на выходе ББП. В этой схеме также применен высокоэффективный сетевой инвертор. Отличие от предыдущей схемы состоит в том, что при пропадании напряжения при отключения сети, солнечные батареи продолжают питать резервируемую нагрузку и заряжать аккумуляторы. В нормальном режиме, при наличии напряжения в сети, сетевой инвертор снабжает энергией резервируемую нагрузку, при этом КПД преобразования инвертора очень высокий - более 90-95%. Если нагрузка потребляет меньше, чем вырабатывают солнечные батареи, излишки энергии идут на заряд аккумуляторов. Если нагрузка потребляет больше - то недостающая энергия берется из сети. После полного заряда аккумуляторов излишки энергии направляются в общую сеть и питают остальную нагрузку в доме (до ББП).

При аварии в сети ББП переключается на работу от аккумуляторов, и обеспечивает одновременно опорное напряжение для сетевого инвертора. Поэтому энергия солнца продолжает использоваться и при авариях в сетях. Как и при наличии сети, излишки солнечного электричества сначала направляются на заряд аккумуляторов. После того, как аккумуляторы полностью зарядятся, возможны 2 варианта:
1) ББП дает сигнал для выключения сетевого инвертора, и он остается выключенным до тех пор, пока напряжение на АКБ не снизится до заданного уровня.
2) При использовании сетевых инверторов SMA Sunny Boy совместно с ББП Xtender или SMA возможно постепенное снижение мощности сетевого инвертора в зависимости от напряжения на АКБ.

При авариях в сети батарейный инвертор обеспечивает для сетевого инвертора опорное напряжение, что позволяет продолжать питать нагрузку переменного тока напрямую от солнечного сетевого инвертора. Естественно, вся нагрузка, подключенная до батарейного инвертора, не получает энергию - ни от аккумуляторов, ни от солнечных батарей.

Если напряжение в сети не пропало, но вышло за пределы допустимого, то инвертор отключается от такой сети и продолжает питать ответственную нагрузку качественным током - от СБ и от АБ. Нагрузка, подключенная до инвертора, питается тем напряжением, которое есть в сети.

    Достоинства
  1. Продолжение использования солнечной энергии при авариях на централизованной сети электроснабжения. т.е. возможность использования энергии солнца как при наличии сети, так и во время отключений.
  2. Высокий КПД использования энергии от солнечных батарей за счет применения высокоэффективных сетевых инверторов и снижения потерь на стороне постоянного тока за счет повышенного напряжения СБ
  3. Возможность восстановления при глубоком разряде аккумуляторов при использовании небольшой СБ, подключенной к АБ через контроллер заряда (показаны пунктиром). Это необязательный элемент, если отключения кратковременные.
  4. Аккумуляторы все время находятся в заряженном состоянии и практически работают в буферном режиме и используются только при отключениях сетевого электричества и отсутствии солнечной энергии
    Недостатки
  1. Необходимость применения специальных ББП, которые могут заряжать АБ с выхода, а также направлять излишки солнечной энергии в сеть. Также, такой ББП должен или давать сигнал на отключение сетевого инвертора, или повышать частоту на выходе для управления сетевым инвертором (большинство сетевых инверторов прекращают работу при выходе параметров частоты за заданные пределы)
  2. Суммарная мощность сетевых инверторов, подключенных к такому ББП, должна быть меньше или равна мощности зарядного устройства ББП. Это необходимо для того, чтобы утилизировать энергию от СБ при отключениях сети и разряженных аккумуляторах.
  3. При длительных перерывах в электроснабжении и отсутствии солнечной энергии ББП может выключиться по низкому уровню заряда АБ. Восстановить их возможно только когда появится напряжение в сети, или путем установки дополнительного небольшого фотоэлектрического модуля с контроллером заряда. Такой случай возможен, но вероятность его очень небольшая.

В вариантах 1 и 3 в обычном режиме работы инвертор использует солнечную энергию для заряда аккумуляторов и для питания нагрузки в доме. Если есть излишки энергии, он направляет их в общую сеть (если разрешить ему это делать), или снижает выработку энергии солнечными батареями. При этом совсем необязательно направленная на вход инвертора энергия теряется - она может быть использована другими потребителями в доме, которые не резервируются этим инвертором. Т.е. например, вы зарезервировали холодильник, резервное освещение, систему отопления, телевизор и т.п. инвертором. Но в доме у вас есть еще другая нагрузка, которая может и не работать, когда пропадает сеть - например, стиральная машина, электроинструмент, электрочайник и еще много чего.

Когда есть сеть, солнечная энергия используется как для питания этой нагрузки, так и (если она полностью не потребляется резервируемой нагрузкой) для питания другой нагрузки в доме. Таким образом вы максимально используете свои солнечные батареи и полностью потребляете все, что они вырабатывают. В автономной системе такого нет - если АБ заряжены и нагрузки нет, то генерация солнечными батареями уменьшается или прекращается вовсе.

Применение сетевых инверторов и схем включения рис. 2 и 3 в большинстве случаев повышает эффективность системы. См. сравнение КПД контроллеров постоянного тока и сетевых инверторов.

Далеко не каждый инвертор может обеспечить работу системы в таких режимах. Такой специализированный инвертор выполняет 3 функции

  1. обеспечение резервного электроснабжения во время аварий в сети,
  2. заряд аккумуляторов от сети, а в некоторых случаях и от сетевого инвертора
  3. и передачу излишков энергии в сеть

В настоящее время мы предлагаем несколько моделей инверторов и ББП, которые могут работать в таких системах. Это инверторы Steca Xtender XTH/XTM, SMA Sunny Island, Xantrex XW, RichElectric CombiPlus. Все эти инверторы имеют функцию увеличения мощности сети, могут отдавать излишки солнечной энергии в сеть и т.п. Возможно также ограниченное применение инверторов Outback GFX/GVFX.

Несмотря на сложность батарейной фотоэлектрической системы, преимущества, которые она дает - неоспоримы. Ни один из наших клиентов, установивших такую систему, не пожалел об этом.

Выводы

1. Фотоэлектрическая батарейная система бесперебойного электроснабженияФотоэлектрические системы очень надежны, и безаккумуляторные системы практически не требуют обслуживания. Также, такие системы обладают максимальной эффективностью использования энергии от солнечных батарей - от 90 до 98%. При этом сеть может использоваться как бесплатный аккумулятор практически бесконечной емкости. Обычные аккумуляторные батареи требуют регулярной замены и специальной утилизации, иначе будет нанесен вред окружающей среде. Потребитель несет ответственность за правильную утилизацию АБ. К счастью, сейчас очень много фирм, которые принимают отработанные аккумуляторы, и даже платят за них (небольшие) деньги.

2. Если отключения сети частые, то необходимо добавить в систему аккумуляторы и блок бесперебойного питания. Добавление в систему аккумуляторов, с одной стороны, повышает надежность электроснабжения, но, с другой стороны, требует обслуживания аккумуляторов. Также, за счет использования аккумуляторов и батарейного инвертора снижается КПД системы. КПД батарейных инверторов примерно 85-92%, а КПД заряд-разряда свинцово-кислотных АБ - около 80% (20% теряется на нагрев АБ во время химических реакций). Можно немного повысить КПД заряда-разряда, если использовать АБ в режиме малых токов. Но как только АБ заряжены, вся энергия от солнечных батарей направляется в сеть или на питание нагрузок до батарейного инвертора - именно за счет этого повышается эффективность работы соединенной с сетью системы.

3. Применение сетевых инверторов повышает эффективность работы системы в целом, особенно если большая часть солнечной энергии потребляется в дневное время. Применение специальных ББП с возможностью заряда АБ с выхода позволяет использовать сетевые фотоэлектрические инверторы даже во время перерывов в электроснабжении от централизованной сети.

Условия частичного или полного копирования здесь

За последние 30 минут сайт посетило 64 чел.

Наши координаты:
Москва, 10-я Парковая, 18.
Тел.: +7 (499) 7489064, (499) 7489072, (495) 9568850 доб.200734, email:

При копирования ссылка на источник обязательна. Читайте Правила копирования информации
По всем вопросам работы сайта обращайтесь: