Выбор солнечных панелей: Моно или поли?

Монокристаллические или поликристаллические солнечные модули: Какие лучше выбрать?

Ваша цель: Установить солнечную фотоэлектрическую систему, которая поможет вам уменьшить расходы на электроэнергию.

Проблема: На рынке очень много разных моделей и типов солнечных модулей, и это вас запутало. одни продавцы утверждают, монокристаллические модули это лучший выбор, другие утверждают, что поликристаллические ничем не хуже (или даже лучше). Кто из них прав?

Когда дело доходит до наиболее подходящих для вашего проекта солнечных модулях, потребитель сталкивается с проблемой выбора. На рынке сейчас много разный солнечных модулей, и все продавцы утверждают, что у них “самые лучшие”. Покупателю не просто разобраться в технических характеристиках, узнать достоверную информацию о надёжности и эффективности солнечных модулей.  В основном завлекают низкой ценой, утверждая, что технические параметры не хуже, чем у остальных солнечных панелей. Как и при покупке других товаров, покупатели стремятся получить “самое выгодное предложение”, зачастую жертвуя качеством за счет цены.

Стремление снизить цену очень понятно, но связанное с этим снижение качества может очень сильно повлиять на эффективность всей вашей системы солнечного электроснабжения. Поэтому мы постарались сделать небольшое руководство для покупателей, которое поможет вам ориентироваться в море информации о солнечных панелях, продающихся на российском рынке.

В данной статье вы узнаете все о различиях монокристаллических и поликристаллических модулей.

Тип солнечных элементов – монокристаллические, поликристаллические, аморфные и др.

Основные типы солнечных элементов, которые сейчас массово продаются на рынке (первые 3  кремниевые, которые составляют львиную долю рынка), следующие:

  • монокристалллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты
  • поликристаллические. В настоящее время теряют популярность, хотя имеют меньшую стоимость за ватт, чем монокристаллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
  • аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях. В последние 10 лет практически вытеснены с рынка из-за низкого КПД, сейчас в основном применяются в нишевых проектах (интегрированные в здания солнечные панели) и в мобильных устройствах.
  • CIGs – тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают таки модули всего несколько производителей, и цен на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния

heterostructure поли,монокристаллические,солнечные батареиВ последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Их стоимость в настоящее время почти сравнялась со стоимостью стандартных кристаллических модулей с токосъемными шинами, поэтому они занимают все бОльшую долю рынка. Технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.

Какие же модули из перечисленных выше работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Я даже слышал версию, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них “повернуты в разные стороны”.

Что такое монокристаллические модули?

Моно и поликристаллические солнечные модулиЭто технология, которая привела к революции в фотоэнергетике. Первые коммерческие монокристаллические модули появились в 1950-х годах и являются самыми первыми и самыми “продвинутыми” модулями на современном рынке. Как видно из названия, солнечные элементы сделаны из единого кристалла чистого кремния. Производители для формирования слитка используют метод Чохральского для постепенного выращивания кристалла кремния из расплава. В качестве “затравки” используется маленький кристалл чистого кремния. По мере роста кристалла вокруг “затравки”, его температура кремния постепенно падает, тем самым формируется кристалл чистого кремния цилиндрической формы.

Процесс производства монокристаллического кремния
Процесс производства монокристаллического кремния

Монокристаллические модули можно отличить по их однородному цвету и структуре, что является признаком высокочистого кремния.

Что такое поликристаллические модули?

polysilicon crystall 1 поли,монокристаллические,солнечные батареи
Кристалл поликремния. Из такого нарезаются прямоугольные слитки, а потом пластины.

Поликристаллические солнечные панели сделаны из солнечных элементов с множеством кристаллов. Вместо медленного и очень дорогого процесса выращивания единого кристалла, производители просто опускают кристаллическую “затравку” в ванну с расплавленным кремнием и дают ему остыть. При этом формируются разнонаправленные кристаллы, они небольшие и их много. Из такого большого кристалла нарезаются прямоугольные слитки, а потом из них – пластины. Отсюда и название – мультикристаллические (или поликристаллические, что одно и то же) солнечные элементы. 

Далее процесс аналогичен производству монокристаллических солнечных элементов. На пластинах формируется p-n переход, наносятся электроды и антиотражающее покрытие.

В чем же разница между монокристаллом и поликристаллом?

Разница между монокристаллическими и поликристаллическими элементами (или как их еще часто называют, “ячейками”) определяется их производственным процессом. Монокристаллические солнечные элементы сделаны из единого кристалла. Они более однородны – как по внешнему виду, так и по техническим характеристикам.  Поликристаллические элементы сделаны из блоков кристаллов кремния, что видно при их ближайшем рассмотрении.

Преимущества и недостатки монокристаллических модулей

Преимущества:

  • Монокристаллические солнечные модули имеют самый высокий КПД (современные модули имеют КПД до 22%);
  • Монокристаллические модули занимают меньше места, потому что они имеют больший КПД по сравнению с другими типами солнечных модулей;
  • Монокристаллические модули более долговечны – большинство производителей дает как минимум 25 лет гарантии на такие панели. Причем “стареет” в монокристаллической панели не сам кремний, а то, что его окружает – покрытия, пленки, контакты и проч. Сам монокристалл обладает стабильными характеристиками в течение практически всего срока службы;
  • Считается, что монокристаллические модули лучше работают при низкой освещенности. Однако здесь не все так однозначно, и работа при низкой освещенности больше зависит не от типа кристалла, а от качества исполнения солнечного модуля. Здесь действует общее правило – крупный, известный производитель делает более качественные солнечные панели.

Недостатки:

  • Монокристаллические модули дороже поликристаллических;

Преимущества и недостатки поликристаллических модулей

Преимущества:

  • Они дешевле в производстве, т.к. процесс выращивания поликремния гораздо проще и менее энергоёмкий.
  • Они обычно меньше подвержены влиянию температуры, чем монокристаллические модули.

Недостатки:

  • Т.к. чистота кремния в поликристалле ниже, чем в монокристалле, поликристаллические модули имеют меньший КПД. Современные поликристаллические модули имеют КПД 15-18%.
  • Меньшая эффективность ведет к тому, что для генерации одинакового количества энергии потребуется бОльшая площадь.
Солнечные элементы различных типов
Солнечные элементы различных типов

 

Основные отличия модулей

Параметр Монокристаллические солнечные элементы Поликристаллические солнечные элементы
Кристаллическая структура Все кристаллы ориентированы в одном направлении, зерна кристаллов параллельны Кристаллы ориентированы в разных направлениях, зерна кристаллов не параллельны
Технология производства Монокристаллические цилиндры кремния нарезаются на пластины, затем пластины обрезаются до почти квадратной формы Поликристаллические заготовки прямоугольной формы режутся на пластины.
Температуры изготовления 1400°C 800~1000°C
Форма Прямоугольная, с обрезанными углами (квазипрямоугольные) Прямоугольные или квадратные, различной формы
Толщина <=300μm 300~500μm
Цвет1 Черный Темно-синий
КПД 15%~23% 12%~17%
Стабильность параметров Высокая стабильность Высокая стабильность, но ниже, чем у монокристаллических элементов
Цена2 Относительно высокая Относительно высокая, но ниже, чем у монокристаллических элементов
Окупаемость по энергии 2 года 2~3 года

Примечания:
1Просветляющее и антиотражающее покрытие наносится на элементы, и монокристаллические элементы в солнечных панелях могут иметь темно-синий цвет. Поликристаллические элементы могут иметь разные оттенки синего  и темно-синего цвета
2Цена в последние годы существенно снижена, поэтому различия в цене кристаллических и тонкопленочных элементов минимальны.

Так какой из типов кристаллов работает лучше? Однозначного ответа на этот вопрос нет. В общем случае, с помощью монокристаллических модулей можно получить больше энергии с единицы площади за счет более высокого КПД этих элементов. Но если сравнивать модули с одинаковой мощностью (а именно так обычно и сравнивают модули, т.к. платят за ватты, а не за площадь модулей), то однозначного ответа нет. Очень многое зависит от производителя солнечных элементов – чем качественнее солнечный элемент, тем он лучше будет работать и больше вырабатывать энергии. Выбор известного и проверенного производителя элементов подчас важнее выбора производителей (сборщиков) панелей.

Какие модули выбрать?

Чем больше и чище кристалл кремния, из которого сделаны солнечные элементы, тем они  более эффективны. В результате, монокристаллические модули примерно на 10-15% более эффективны, чем поликристаллические того же размера.

Поликристаллические модули, с другой стороны, часто преподносятся как менее эффективные. Однако их цена за ватт мощности дешевле на 10%, чем у монокристаллических солнечных панелей.

Существует мнение, что поликристаллические модули лучше работают при низкой освещенности, даже проводятся сравнительные тесты, которые якобы подтверждают это. Однако, все эти сравнения – частные случаи, когда сравниваются конкретные модули конкретных производителей. При этом результат при сравнении других модулей может быть прямо противоположным. Нет однозначной зависимости выработки модуля от типа его кристалла. Для того, чтобы получить максимум энергии от солнечной панели, нужно выбирать панель с качественными элементами от проверенных производителей, а не тип кристалла. Хотя, конечно, в теории монокристаллические модули обладают более стабильными характеристиками и имеют бОльший КПД. 

В настоящее время стоимость поликристаллических модулей примерно на 15-20% ниже, чем стоимость монокристаллических. Даже несмотря на то, что монокристаллы более стабильны на протяжении срока службы модуля, более низкая стоимость поликристалла может стать определяющим фактором при принятии решения о покупке солнечной панели.
С другой стороны, поликристаллические модули деградируют быстрее, чем монокристаллические. Цифры по типичной деградации для различных модулей приведены в статье “Срок службы фотоэлектрических модулей“.

И все же, какие солнечные батареи лучше?

Нет однозначного ответа. Ответ зависит от требований вашего проекта. Поликристаллические модули больше подходят для солнечных батарей, где нет ограничений по площади и неважен такой показатель, как мощность или выработка энергии с единицы площади солнечной батареи (например, устанавливаемых на крышах большой площади, или на дешевой земле). Они также подходят для покупателей с ограниченным бюджетом.

Монокристаллические солнечные батареи (особенно PERC), с другой стороны, идеальны для мест с ограниченной площадью – маленькие крыши или ограниченное пространство, освещаемое прямыми лучами солнца в течение дня. Они вырабатывают больше энергии с единицы площади.  Более того, эти солнечные панели имеют меньший температурный коэффициент по сравнению с мультикристаллическими модулями (сравнивать имеет смысл модули одного производителя и одного поколения. Например, для модулей JA Solar из монокристалла, температурный коэффициента равен -0,41%/K, а для поликристалла -0,45%/K).

Global PV cell market status поли,монокристаллические,солнечные батареи

Как видно из приведённого выше графика, основной объем производства на сегодняшний день перешел от дешевых поликристаллических модулей на монокристалл PERC. Мы об этом говорили еще в 2016 году, когда писали первый вариант нашего “Руководства для покупителя солнечных батарей“. Рынок выбрал моно PERC, т.к. чаще преимущество в цене поликристалла не перевешивает преимущества в большем КПД монокристалла. Тенденция современного рынка уже не только стоимость, но и эффективность солнечных батарей. Это объясняется и тем фактом, что цена различных технологий солнечных панелей все меньше отличается друг от друга при том, что абсолютно все технологии дешевеют из года в год. Например, поликристаллический модуль всего примерно на 10% дешевле PERC монокристаллического.  

Солнечные элементы n-типа и p-типа

В последнее время на рынке все чаще стали появляться модули с элементами n-типа. О различиях типов солнечных элементов мы писали в статье про PERC модули и про вызванную потенциалом деградацию.

В общем случае, солнечные элементы n-типа

  1. Имеют меньшую деградацию, вызванную потенциалом (PID loss)
  2. sunpreme pv module поли,монокристаллические,солнечные батареиИмеют меньшую деградацию, вызванную освещением (LID loss). Даже через 25 лет солнечные панели с элементами n-типа имеют такую же мощность, как и в начале эксплуатации. Это подтверждают модули, которые мы раньше продавали и выпускавшиеся краснодарским заводом “Солнечный ветер”.
  3. Более высокая производительность (т.е. выработка кВт*ч в течение года)
  4. Можно делать двусторонние модули, которые имеют более высокую удельную мощность. Задняя поверхность может давать прибавку мощности от 5 до 30%. Например, краснодарские модули имеют мощность с тыльной стороны около 50% от фронтальной, но, т.к. с тыла модули освещаются только отраженным светом (от снега, светлого песка, земли и т.п.), то реальная прибавка к мощности у двусторонних модулей составляет 10-15%.

Курьезы солнечной энергетики

В свете вышесказанного особенно забавными выглядят так называемые “обзоры”, которые можно найти в youtube.

Автор сравнивает модули разных поколений. Моно – с 2 шинами, поли – с 3 шинами. При переходе от 2 к 3 шинам, также как и переходе к стандартным сейчас 4 токосъемным шинам, эффективность солнечных элементов растет на несколько процентов. Потому разница в мощности – не из-за типа кристалла, а из-за поколения и качества исполнения солнечных элементов. Тем более, что у торговой марки, которую “обозревает” автор, источник солнечных элементов неизвестен, и от партии к партии могут применяться элементы различных производителей.

Иногда на просторах интернета можно прочитать и такой “бред”:

Наиболее эффективны в пасмурную погоду кремниевые поликристаллические батареи, хорошо поглощающие не только прямое солнечное излучение, но и рассеянный свет, проникающий через облака. Связано это с тем, что в поликристаллических элементах кристаллы кремния ориентированы не упорядоченно, а хаотически, что, с одной стороны, снижает эффективность батареи при прямом падении солнечного излучения, а, с другой, снижает ее незначительно при характерном для пасмурной погоды рассеянном освещении.

Конечно же, никакого эффекта на преобразование рассеянного света разное направление кристаллов не имеет. Написавший эти строки не имеет представления о том, как работает солнечный элемент. Нет данных, доказывающих, что поликристаллические элементы лучше преобразуют рассеянный свет, чем монокристаллические. Больше разницы можно увидеть между работой элементов p-типа и n-типа, нежели между моно- и поликристаллом. Разница в работе солнечных элементов при разной освещённости в основном определяется качеством изготовления и технологии, а не типом кристалла. Есть конкретные поликристаллические модули, которые работают лучше конкретных монокристаллических. Которые в свою очередь могут работать лучше других поликристаллических. Как обычно, чем крупнее и известнее производитель, тем более предсказуем результат и лучше качество. Именно поэтому мы всегда рекомендуем к покупке известные и проверенные бренды солнечных панелей. Все они перечислены в нашем Интернет-магазине в разделе “Солнечные панели“, а также на нашем сайте в разделе “Солнечные батареи“.

Заключение

Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.

Если вы не ограничены в бюджете и хотите достичь максимального срока службы и максимальной выработки энергии за срок службы солнечной панели, и вам важна площадь, занимаемая солнечной батареей – выбирайте монокристалл. Если есть ограничения в деньгах и нет ограничений по площади установки солнечной батареи и вы не гонитесь за максимальным показателем выработки кВт*ч за срок службы солнечной панели – смело покупайте поликристаллические модули.

“Ваш Солнечный Дом” всегда поможет вам с выбором солнечных панелей. Как лидеры рынка с огромным опытом, мы всегда сможем вам подсказать, какой солнечный модуль и какая технология наиболее подходят вам для решения вашей специфической задачи.

Эта статья прочитана 31714 раз(а)!

Продолжить чтение

  • 80
    Китайские солнечные модули - как выбрать?Китайские солнечные модули - как не ошибиться при покупке? В последнее время на рынке появилось много предложений по китайским солнечным модулям. Действительно, в Китае сейчас производится бОльшая часть всех производимых в мире солнечных модулей. Есть среди них и качественные, отвечающие…
  • 74
    Современные солнечные элементы и модулиНовейшие технологии солнечных элементов и модулей Автор: Каргиев В.М., к.т.н. © Технологии производства солнечных элементов и панелей постоянно развиваются и совершенствуются. Производители и исследователи постоянно ищут пути увеличить эффективность солнечных панелей, повысить количество вырабатываемой энергии с единицы площади, улучшить их…
  • 70
    Солнечные батареи. Руководство для покупателяРуководство для покупателя по выбору солнечных панелей При перепечатке ссылка на этот сайт обязательна, См. Правила копирования. "Ваш Солнечный Дом" Общее правило при покупке солнечных батарей Последние несколько лет, очень много компаний, начиная от ландшафтных дизайнеров до установщиков окон, крыш,…
  • 67
    Качество солнечных элементов и модулей2 основных параметра для оценки качества солнечных модулей Нам часто задают вопрос - почему у вас солнечные панели стоят столько, а у каких-то других продавцов - дешевле. Простой ответ похож на известную и набившую оскомину фразу. Согласно известной рекламе, "не…
  • 66
    Как выбрать солнечную батарею и не пожалеть об этом?Как правильно выбирать солнечные элементы и модули Вы собрались купить солнечную батарею? В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах,…
  • 66
    PERC - почему за ним будущее?Технология солнечных элементов PERC: Почему она будет доминировать в ближайшем будущем? Последние несколько лет технология изготовления солнечных элементов PERC является одним из фаворитов научно-исследовательских работ в фотоэлектрической индустрии, и уже стала стандартом при серийном производстве фотоэлектрических модулей. PERC означает Passivated…

Google рекомендует

Реклама

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *