Основы ветроэнергетики. Типы ветротурбин

Поделиться ссылкой на статью

Обновлено 17 февраля, 2023

Мощность, эффективность, быстроходность ветротурбин

Ветроэнергетические установки (ВЭУ) преобразует кинетическую энергию ветра в механическую или электрическую энергию, удобную для практического использования. ВЭУ производят электрическую энергию для бытовых или промышленных нужд. Какие ветротурбины наиболее эффективные и экономически выгодные? Как определить мощность ветроустановки по размерам ветроколеса? Ответы на эти вопросы см. ниже.

Какие бывают ветротурбины?

Ветротурбины горизонтально и вертикально осевые
Ветротурбины горизонтально и вертикально осевые

Ветротурбины отличаются по ориентации оси вращения по отношению к направлению ветра и по типу ветротурбины.

По ориентации оси вращения ветротурбины подразделяются на ветроустановки с вертикальной осью вращения и ветроустановки с горизонтальной осью вращения. Ветроустановки с горизонтальной осью составляют около 95% всех ветроустановок, подключенных к сетям энергосистем.

Ветротурбины также принципиально отличаются по тому, какую силу они используют для преобразования в механическую — силу давления ветра или подъемную силу. От этого свойства существенно зависит КПД ветротурбины. Теоретические КПД равны: для первого типа 0,22, для второго — 0,59 (согласно теории Жуковского Бетца). 

типы ветротурбин,ветроустановка,ветрогенератор,выбрать ветрогенератор

типы ветротурбин,ветроустановка,ветрогенератор,выбрать ветрогенератор

030 foto1 типы ветротурбин,ветроустановка,ветрогенератор,выбрать ветрогенератор
Ветротурбина чашечного типа (использует силу давления ветра)

Ветроустановки, использующие силу давления ветра, имеют право на жизнь, но наукой и опытом давно доказана их очень низкая эффективность по сравнению с пропеллерными или другими, использующими подъемную силу крыла. Это примерно как гребные колеса у дореволюционных пароходов по сравнению с обычным винтом любого современного корабля или катера. Такие ветротурбины имеют большую материалоемкость и, соответственно, высокую удельную стоимость.

Ортогональные ветроустановки с вертикальной осью вращения, которые используют подъемную силу крыла, имеют КПД немногим менее пропеллерных, поэтому их эффективность также высока. Но у таких вертикально-осевых турбин есть другой недостаток — они не могут самостоятельно начать вращение, и для их запуска их надо раскрутить — или от сети, или с помощью другой ветротурбины, имеющей стартовый момент вращения (часто используется турбина Савониуса для этих целей).

Часто люди думают, что чем больше лопастей у ветротурбины, тем она лучше работает и мощнее. Это не так. Современные ветротурбины забирают энергию со всей ометаемой площади лопастей, а не только с площади самих лопастей. Почему это так, доступно объяснено в видео ниже, где кратко изложена теория Жуковского-Бетца. Согласно этой теории, максимальный теоретический КПД ветротурбины не может быть больше 0,59. Современные пропеллерные и ортогональные турбины уже достигли КПД 0,5.

Ветротурбина Дарье
Идея этого ветрогенератора была предложена французским изобретателем Дарье в 1920 году. Но вплотную заниматься разработкой этой идеи начали только в 1970 году. В настоящее время ветрогенератор Дарье считается главным конкурентом ветрогенераторов с обычными ветроколесами.
Его особенность состоит в том, что он использует подъемную силу аэродинамики лопастей, которые в поперечнике имеют форму крыла. Стартовый вращательный момент такого ротора небольшой, а быстроходность высокая. За счет этого его мощность по отношению к собственной массе наибольшая. Это позволяет иметь одну или больше лопастей, и несколько разновидностей формы ротора.
Мощность нынешних ветрогенераторов намного больше, чем у их предшественников – ветряков. Лопасти колес очень легкие и одновременно прочные. Они изготовляются из синтетических материалов или стали. Их производительность зависит не только от скорости ветра, но и способности его улавливать. Увеличение вращения пропеллера вдвое, дает увеличение производства количества электроэнергии в четыре раза.
Конструкция любого вида ветровой электростанции, независимо от мощности, практически одинаковая. Она состоит из мачты, контейнера для генератора и редуктора с ветроулавливателем. Мачта может быть нескольких типов: обычная на растяжках, телескопическая или монолитная. Подвижное крепление контейнера для генератора и ротора позволяет пропеллеру быть постоянно развернутым к фронту ветра.

turbine types 1 типы ветротурбин,ветроустановка,ветрогенератор,выбрать ветрогенератор

Вертикально-осевые ветротурбины (ВОВТ), как правило, менее эффективны, чем горизонтально-осевые ветротурбины (ГОВТ), по следующим причинам:

  • Лопасть испытывает сопротивление при вращении, т.к. на части траектории она должна двигаться противоположно направлению ветра
  • ВОВТ часто установлены на более низкой высоте (земля или крыша здания), где скорость ветра меньше.
  • ВОВТ имеют проблемы, связанные с вибрацией, например, шум и более быстрый износ и разрыв опорной конструкции (так как воздушный поток имеет большую турбулентность на низкой высоте).
  • Нагрузка на электрогенератор от массы ветротурбины, если она установлена на одном валу с электрогенератором.
КПД ветротурбин
Максимальный КПД ветротурбин различного типа

Важным параметром ветроколеса является быстроходность. Быстроходность — это отношение линейной скорости лопасти к скорости ветра. У ветротурбин, использующих силу давления ветра, быстроходность всегда меньше 1. К таким ветротурбинам относятся карусельные, чашечные и другие аналогичные типы ветротурбин. Ротор Савониуса имеет быстроходность немного больше единицы потому, что кроме силы давления ветра в нем используется еще и реактивная сила. У ветротурбин, использующих подъемную силу крыла, скорость лопасти больше скорости ветра.

Как это не парадоксально, но чем меньше лопастей в ветроколесе, тем выше его КПД. Это проверено как теоретическими исследованиями, так и продувками в аэродинамической трубе, хотя разница между 1, 2, 3 лопастями незначительна. Однако, с уменьшением количества лопастей также уменьшается момент страгивания и ухудшается работа при низких скоростях ветра. У однолопастных ветротурбин также есть серьезная проблема с балансировкой и надежностью ветроколеса.

Ветрогенераторы с 2-3 лопастями относятся к быстроходным с более высоким КПД и частотой вращения, но при этом у них низкий стартовый момент вращения ротора. Поэтому быстроходные ветрогенераторы выгодно объединять с электрическим генератором, так как электрический генератор имеет высокую частоту вращения (для улучшения массогабаритных характеристик) и низкий пусковой момент. Тихоходные многолопастные ветротурбины обычно работают в связке с водяными насосами, у которых большой момент запуска и меньшая частота вращения. Быстроходные 3-х лопастные ветрогенераторы получили большее распространение, чем 1-2-х лопастные, несмотря на их высокую стоимость. 3-х лопастным ротором генерируется меньше вибрация и выглядит он более эстетично. Поэтому во всем мире оптимальным количеством лопастей горизонтально-осевой ветротурбины признано 3.

От чего зависит мощность ветротурбины?

Мощность ветротурбины зависит от скорости ветра, площади ометаемой поверхности и эффективности ветротурбины. Это основные факторы, влияющие на вырабатываемую ветротурбиной мощность (и, соответственно, энергию). На выработку также влияет турбулентность ветропотока, плотность воздуха, равномерность распределения скорости ветра по ометаемой площади.

Скорость ветра — важнейший элемент в проектировании и использования ветроустановки. Вырабатываемая мощность пропорциональна кубу скорости ветра и квадрату диаметра ротора. Это означает, что при удвоении скорости ветра возможная вырабатываемая мощность увеличивается в 8 раз. Так, ветроустановка, работающая при средней скорости 6 м/с, генерирует мощность на 44% большую, чем при скорости 5 м/с. Если скорость ветра определяется местом, где сооружается ветроустановка, то диаметр ее ротора — это элемент конструкции, величина которого зависит от многих расчетных параметров. Чаще всего решается обратная задача: задается проектируемая мощность ВЭУ и далее определяется требуемый диаметр при определенной расчетной скорости.

Формула мощности ВЭУ выглядит следующим образом:

P=½·ρ·A·V3·Cp·ηг·ηм, Вт

где ρ= 1,22 — плотность воздуха (стандартная), кг/м3
V — скорость ветра, , м/с
ηг·ηм— коэффициенты полезного действия генератора и механической передачи между ветроколесом и генератором,
Cp — коэффициент использования энергии ветра (КИЭВ), зависящий от профиля лопастей и других режимных параметров, предельное значение которого равно 0,593, а достигнутое в эксплуатации- 0,4-0,45,
А — площадь ветротурбины, в случае пропеллерной турбины вычисляется по формуле:

А=¼π·D2, м2

где D, м- диаметр ротора,π=3,14.

Диаметр ротора ВЭУ по мере возрастания мощности ветроустановки от 1 до 3000 кВт увеличивается от 2 до 100 м, а высота башни от 8 до 100 м. Для ВЭУ выше 150 кВт диаметр ротора и высота башни примерно равны.

Скорость ветра увеличивается с высотой над уровнем земли, поэтому чем выше мачта ветротурбины, тем более производительной будет ветроустановка.

Не стоит увлекаться поиском ВЭУ, начинающих работать на малых скоростях ветра — до 3 м/с, так как на этих скоростях ветра его энергия ничтожно мала. Например, для ВЭУ с диаметром винта 5 м вырабатываемая мощность при скорости ветра 2 м/с будет менее 30 Вт, причем половина этой мощности уйдет на всякие потери в механических элементах, генераторе и контроллере, а оставшиеся 15 Вт — это мизер для аккумуляторов, рассчитанных на номинальную мощность 5 кВт. Так что, кроме наслаждения от вида вращающегося ветроколеса, вы больше ничего не получите.

Очень важным параметром в проектировании ВЭУ является коэффициент использования установленной мощности (КИУМ), дающий представление об эффективности работы ВЭУ. Это отношение средней выработки генерирующего устройства к максимально возможной. Большинство современных ВЭУ работают с коэффициентом использования установленной мощности от 25 до 35%. Электростанции, работающие на невозобновляемых источниках энергии, имеют коэффициент использования установленной мощности от 40 до 80%. Лучшие ветроустановки в хороших ветровых условиях работают с коэффициентом 0,5. На КИУМ влияет кроме среднегодовой скорости ветра также и время, которое затрачивается на техническое обслуживание и ремонт ветроустановки.

Ветроустановка состоит из следующих основных подсистем и узлов:

  1. ротор или лопасти, который преобразует энергию ветра в энергию вращения вала,
  2. кабину или гондолу, в которой обычно расположен редуктор ( некоторые турбины работают без редуктора),
  3. генератор и другие электромеханические системы,
  4. башню или мачту, которая поддерживает ротор и кабину,
  5. электрическое и электронное оборудование, такие как панели управления, электрические кабели, оборудование заземления, оборудование для подключения к сети, система молниезащиты, система накопления электроэнергии и ее стабилизации, и др.

Как выбрать ветрогенератор?

Типы ветротурбин
А. Ортогональный В. С горизонтальной осью С. Геликоидный ротор или Ротор Горлова D. Многолопастной ротор E. Ротор Дарье

Распространенная ошибка — выбирать мощность ветроустановки по пиковой мощности нагрузки. Ветрогенератор, также как и солнечные батареи, является источником энергии, а не мощности. Поэтому расчет ветроэнергетической системы ведется в несколько шагов, и желательно, если это сделает специалист.

Для выбора ветрогенератора сначала Вам необходимо определить своё потребление в кВт*часах в месяц, пиковую (суммарную) мощность всех приборов и постараться узнать среднегодовую и среднемесячные скорости ветра в Вашей местности. Последний параметр не всегда возможно определить с достаточной точностью. Даже если вы получите данные по многолетним скоростям ветра от ближайшей метеостанции, не факт, что в месте установки вашей ветротурбины будет именно такая скорость ветра. Поэтому для больших ветростанций необходимо обязательно проводить мониторинг скорости ветра хотя бы в течение одного года, а затем сделать корреляцию полученных данных с данными от ближайшей метеостанции. Для малых ветроустановок такой путь слишком дорог, и очень часто малые ВЭУ устанавливаются на страх и риск хозяина. В таких случаях обычно, если ветра недостаточно, признается, что решение об установке ветротурбины было ошибочным. Если же ветер хороший, то следующим шагом обычно является увеличение мощности малой ветростанции.

Для получения электричества в необходимом объёме нужно понимать, что количество вырабатываемой ветряком энергии напрямую зависит от ометаемой ветротурбиной площади или максимального сечения ветротурбины. Для минимального обеспечения пары лампочек, ТВ, холодильника, электрочайника — диаметр ветряка должен быть не менее 2,5 метров при средних по силе ветрах.

Особое внимание стоит уделять не только мощности ВЭУ (именно ВЭУ, а не инвертора, входящего в комплект), но и при какой скорости ветра эта мощность может быть получена. Некоторые продавцы представляют завышенные показатели. Для этого не поленитесь подсчитать по несложной формуле мощность, которую способен отдать ветряк с винтом конкретного диаметра. Эта мощность практически зависит только от скорости ветра V и диаметра ветротурбины D, а все остальные факторы — количество лопастей, их вес, площадь, профиль, крутка, генератор, подшипники и т. д. — второстепенные и большой погрешности не дают.

Упрощенная формула расчета реально отдаваемой ветром мощности в зависимости от скорости ветра и диаметра винта:

Р = D2V3/7000, кВт,

с точностью ±20% (зависит от КПД турбины и генератора). +20% — идеальная ВЭУ, ее цена увеличится в 2-3 раза. -20% — первый ветряк энтузиаста-любителя. При равной мощности ВЭУ выбирайте ту, у которой диаметр ветроколеса больше.

Некоторые производители представляют результаты продувок своих ветроэлектрических установок по мощности в аэродинамической трубе. Это хорошо, и говорит о серьезном подходе к делу. Однако, необходимо учитывать, что мощность в аэродинамической трубе и в природе на ветру отличаются примерно на 10-30% вследствие идеализации воздушного потока в трубе. Реальный поток ветра имеет турбулентности, которые существенно ухудшают параметры ветроколеса.

Мощность, вырабатываемая ветрогенератором, пропорциональна кубу скорости ветра. Это означает, что мощность ветрогенератора на слабых ветрах (даже если он вращается) очень мала. Но, с усилением ветра, идет резкое нарастание мощности. А поскольку ветер на практике дует с постоянной скоростью и направлением только в аэродинамической трубе, понятно, что мощность, вырабатываемая ветрогенератором, является постоянно меняющейся по времени величиной. Поэтому любая энергетическая система с использованием ветрогенератора в качестве источника энергии должна иметь стабилизирующее звено.

В малых автономных системах роль такого звена обычно играет аккумуляторная батарея. Если мощность ветрогенератора больше мощности нагрузки, батарея заряжается. Если мощность нагрузки больше – батарея разряжается. Из этого следует следующая важная особенность ветрогенератора, как источника мощности: если большинство других источников выбираются по мощности пиковой нагрузки, ветрогенераторы следует выбирать, исходя из величины потребления электроэнергии в месяц (или в год, как кому нравится).

Проиллюстрируем это на примере. На берегу моря, где средняя скорость ветра приближается к 6 м/с, стоит домик, куда приезжает семья из трех человек на выходные. Электрооборудование включается тоже только на выходные. В день потребление достигает 15 кВт*ч, при этом пиковая нагрузка – до 3 кВт. Следовательно, в месяц потребление энергии равно 120 кВт*ч. При среднегодовой скорости ветра 6 м/с выработку 120 кВт*ч в месяц может обеспечить небольшой 700-ваттный ветрогенератор. Кроме того, для аккумулирования энергии в течение 5 дней потребуется батарея большой емкости, и инвертор (который преобразовывает постоянное напряжение батареи в стандартное переменное) мощностью 3 кВт, чтобы обеспечить пиковые нагрузки.

Как можно видеть, в каждом из вышеописанных случаев мощность ветрогенератора отличается в разы от пиковой мощности нагрузки. Мощность пиковой нагрузки определяет мощность преобразователя. Сам ветрогенератор определяет только величину выработки в определенный временной промежуток при определенной среднемесячной скорости ветра. Кроме средней скорости ветра, существуют более подробные вводные данные для оценки ветровых ресурсов, называемые параметрами распределения Вейбулла, которые отражают распределение длительности ветра определенной силы для данного места, они используются при проектировании ветропарков мощностью в десятки МВт.

В каких случаях выгодно использовать ветрогенератор?

Ветровые электростанции установки наиболее выгодно использовать в местах, где невозможно провести общую электросеть, или соединение является очень затратным, а также — в местах с частыми отключениями электричества. Ветровые электростанции смысл устанавливать, если в месте становления среднегодовая скорость ветра превышает 3 м/с.

В общем случае, при среднегодовой скорости ветра более 4 м/с на высоте 10 м (на этой высоте на метеостанциях устанавливаются анемометры — приборы, измеряющие скорость ветра) возможно эффективное применение ветроустановок, а ветер с меньшей скоростью годится для водоподъемных устройств.

Наиболее экономически выгодное применение ВЭУ имеет место, если ветротурбины объединены в группы. Их называют ветроэлектрическими станциями (ВЭС), а за рубежом «ветровыми фермами» (wind farm). Их мощность колеблется от сотен киловатт до сотен мегаватт. Ветроустановки большой мощности не предназначены для автономной работы или работы параллельно друг с другом. Поэтому как только отключается ЛЭП (линия электропередачи), связывающую ВЭУ с энергосистемой, останавливаются и ВЭС. Обычно при проектировании обеспечивается связь с двумя ЛЭП с разных точек энергосистемы. Для одиночных ВЭУ и небольших ВЭС, питающих определенную нагрузку, нужно иметь резервный источник электроснабжения (дизель-генератор, газотурбинная установка, солнечные батареи).

Хорошими ветровыми условиями в России обладают следующие субъекты РФ: Архангельская, Астраханская, Волгоградская, Калининградская, Камчатская, Ленинградская, Магаданская, Мурманская, Новосибирская, Пермская, Ростовская, Сахалинская, Тюменская области, Краснодарский, Приморский, Хабаровский края, Дагестан, Калмыкия. Карелия, Коми. Ненецкий автономный округ, Хакасия, Чукотка, Якутия, Ямало-Ненецкий автономный округ.

По опыту эксплуатации ветропарков, установленных в Российской Федерации, их КИУМ в среднем равен 12%. Как видим, российские ветропарки имеют невысокий КИУМ.  Это связано как с невысокой среднегодовой скоростью ветра в местах их установки, так и с большим временем простоя.

Какие нужны документы и разрешения для установки ветрогенератора?

Импортируемые ветроустановки не подлежат сертификации. Вы можете без проблем установить на своей территории для себя ветрогенератор мощностью до 75 кВт и высотой до 30 метров для личного некоммерческого использования. Для этого не нужны никакие документы, справки или разрешения.

Обсуждения по теме с нашего форума

 

Эта статья прочитана 76735 раз(а)!

Продолжить чтение

  • 10000
    Руководство по ветроэнергетике (Интерсоларцентр)В 2001 году Интерсоларцентр совместно с партнерами по ОПЭТ (ETSU и WREAN, Англия) подготовил руководство по применению малых и средних ветроэнергетических установок. Эксперты  компании "Ваш Солнечный Дом" принимали участие в подготовке этого Руководства на русском языке. За основу было принято…
  • 10000
    100 вопросов и ответов по ветроэнергетике100 вопросов и ответов по ветроэнергетике Выдержки из брошюры "Ветроэнергетика. Вымыслы и факты. Ответы на 100 вопросов". Полную версию брошюры можно скачать по следующей ссылке:Скачать брошюру Авторы: П. П. БЕЗРУКИХ д. т. н., П. П. БЕЗРУКИХ (МЛАДШИЙ) ЧТО ТАКОЕ ВЕТЕР?…
  • 10000
    100 вопросов и ответов по ветроэнергетике -2100 вопросов и ответов по ветроэнергетике - 2 Выдержки из брошюры "Ветроэнергетика. Вымыслы и факты. Ответы на 100 вопросов" Авторы: П. П. БЕЗРУКИХ д. т. н., П. П. БЕЗРУКИХ (МЛАДШИЙ) Начало... ЧТО ТАКОЕ ВЕТРОСТАНЦИЯ? В энергетике станции любого типа стремятся…
  • 10000
    Ветроустановки - FAQВопросы и ответы по использованию ветрогенераторов
  • 10000
    Основы ветроэнергетики (Харитонов В.П.)Автономные ветроэлектрические установки Предупреждаем пользователей об обязательном соблюдении законодательства по авторскому праву, в соответствии с которым полученные копии документов разрешается использовать только для научных и образовательных целей. Запрещается тиражировать полученные копии документов, передавать на любой основе копии документов другим лицам…
  • 65
    ВетрогенераторыВетроэлектрические станции Одним из перспективных направлений развития возобновляемой энергетики является ветроэнергетика. Использование энергии ветра не только помогает решить многие проблемы энергоснабжения удаленных объектов и загородных домов, но и получить независимость от местных энергоснабжающих организаций. Поставив на своём участке хотя бы…
Реклама

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *